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Background: The analysis of repeated-measures data pre-
sents challenges to investigators and is a topic for ongo-
ing discussion in the Archives of General Psychiatry. Tra-
ditional methods of statistical analysis (end-point analysis
and univariate and multivariate repeated-measures analy-
sis of variance [rANOVA and rMANOVA, respectively])
have known disadvantages. More sophisticated mixed-
effects models provide flexibility, and recently developed
software makes them available to researchers.

Objectives: To review methods for repeated-measures
analysis and discuss advantages and potential misuses of
mixed-effects models. Also, to assess the extent of the shift
from traditional to mixed-effects approaches in pub-
lished reports in the Archives of General Psychiatry.

Data Sources: The Archives of General Psychiatry from
1989 through 2001, and the Department of Veterans Af-
fairs Cooperative Study 425.

Study Selection: Studies with a repeated-measures de-
sign, at least 2 groups, and a continuous response variable.

Data Extraction: The first author ranked the studies
according to the most advanced statistical method used
in the following order: mixed-effects model, rMANOVA,
rANOVA, and end-point analysis.

Data Synthesis: The use of mixed-effects models has
substantially increased during the last 10 years. In 2001,
30% of clinical trials reported in the Archives of General
Psychiatry used mixed-effects analysis.

Conclusions: Repeated-measures ANOVAs continue to
be used widely for the analysis of repeated-measures data,
despite risks to interpretation. Mixed-effects models use
all available data, can properly account for correlation
between repeated measurements on the same subject, have
greater flexibility to model time effects, and can handle
missing data more appropriately. Their flexibility makes
them the preferred choice for the analysis of repeated-
measures data.
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D URING THE PAST 15 YEARS,
the Archives of General
Psychiatry (ARCHIVES) has
published periodic re-
views of the status of the

analysis of repeated-measures data.1-3 These
reviews have highlighted the importance,
challenges, and evolution of analytic meth-
ods for these data. In randomized clinical
trials and longitudinal follow-up studies,
one must use appropriate statistical meth-
ods to adjust for multiple measurements of
the same individual and model time trends.
Repeated-measures data are usually corre-
lated, since sequential observations of the
same individual tend to be closer in value
to one another than the same number of ob-
servations collected from different indi-
viduals would be. Missing data also pre-
sent special challenges for analysis.

The most commonly used ap-
proaches for analyzing repeated-measures

data shifted over time from end-point analy-
sis to univariate and multivariate repeated-
measures analysis of variance (rANOVA
and rMANOVA, respectively). Despite the
strengths of these approaches, each method
has important disadvantages. In the 1990s,
studies published in the ARCHIVES began to
use mixed-effects regression models.3

Mixed-effects regression models provide a
general framework for the analysis of re-
peated measures, and recently developed
statistical software makes these models ac-
cessible to researchers.

The purpose of this article is to take
stock of the impact of mixed-effects regres-
sion models on the analysis of repeated-
measures data in psychiatry research, in-
crease awareness of the advantages and
potential pitfalls of these models, and
encourage their use over traditional meth-
ods. In doing so, this article will briefly re-
view the main methods for repeated-
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measures analysis for continuous
data, and will use data examples to
illustrate the flexibility and limita-
tions of the mixed-effects models. In
addition, we will briefly discuss the
extent of the shift from end-point
and ANOVA-type methods toward
mixed-effects regression models in
the ARCHIVES. For clarity of discus-
sion, we consider a randomized
clinical trial in which each subject
undergoes measurement at base-
line (time 0) and then at times t1, t2,
etc, through tm, where tm is the end
of the treatment period. A sum-
mary of the features and draw-
backs of the different models is pre-
sented in Table 1.

TRADITIONAL METHODS

End-point analysis makes use only
of the baseline (time 0) and the fi-
nal observation on each subject (time
tm). The following 2 approaches are
most commonly used: ANOVA and
analysis of covariance (ANCOVA).
Analysis of variance (or t test in the
case of 2 treatment groups) is used
to compare the final measures or the
change scores between the baseline
and final measurement between the
treatment groups. Analysis of co-
variance is used to compare the fi-
nal measures between the groups us-
ing the baseline measure as a
covariate. Analysis by intention-to-

treat means that all randomized sub-
jects contribute data to the analysis
regardless of whether they were
compliant or dropped out of the
study. Such analysis then requires
that each subject have a final mea-
sure. Thus, missing data on the fi-
nal measure becomes a serious prob-
lem. If the analysis is performed only
on these subjects who have under-
gone measurement at time tm, then
the samples compared may not be
representative of the populations,
and serious sample bias may occur,
despite randomization. If the analy-
sis is performed with some imputa-
tion method such as the last obser-
vation carried forward (LOCF),
there is a serious risk for estima-
tion bias. Thus, end-point analysis
can yield misleading results when
dropout rates differ between the
treatment groups.3-8

When observations are made at
multiple time points, often a t test
or ANOVA is performed separately
at each time point. If a 5% signifi-
cance level test is used for each test,
then the probability of type I error
(that is, of mistakenly declaring
treatments to be different) some-
times is considerably greater than
5%. This leads to false-positive con-
clusions. If this proliferation of type
I error is controlled using proce-
dures such as a Bonferroni correc-
tion,1 then power is compromised

(ie, treatment differences may not be
detected when they exist). Perform-
ing separate tests at each time point
also ignores trends over time and
does not allow for direct compari-
son between treatment groups over
time.

Univariate repeated-measures
ANOVA9 provides a more com-
plete description of the time effect,
because it includes data from all
time points. This approach allows
statistical assessment of whether
the treatment groups show dif-
ferent response curves over time
(treatment�time interaction effect).
The treatment response may take a
variety of shapes. For example, there
might be little or no improvement
in one treatment group and larger
improvement in the other, or the
same total improvement between the
baseline and end point in both treat-
ment groups but faster response in
one of the groups. In the latter case,
end-point analysis will not find a dif-
ference, whereas rANOVA may de-
tect a significant time� treatment
effect.

Like end-point analysis, analy-
ses using rANOVA are vulnerable
to large effects from missing values
or imputation. Researchers fre-
quently drop subjects with even 1
missing observation from analysis or
use imputation of missing values
without acknowledging it. Omis-

Table 1. Comparison of Traditional and Mixed-Effects Approaches for the Analysis of Repeated-Measures Data

End-Point Analysis rANOVA rMANOVA
Mixed-Effects

Analysis

Complete data required on
every subject

Yes No* Yes No

Possible effect of omitting
subjects with missing
values

Sample bias Sample bias Sample bias Not applicable†

Possible effects of
imputation of missing
data

Estimation bias Estimation bias Estimation bias Not applicable†

Subjects measured at
different time points

Yes No No Yes

Description of time effect Simple Flexible Flexible Flexible
Estimation of individual

trends
No No No Yes

Restrictive assumptions
about correlation pattern

Not applicable Yes No No

Time-dependent covariates No Yes No Yes
Ease of implementation Very easy Easy Easy Hard
Computational complexity Low Low Medium High

Abbreviations: rANOVA, univariate repeated-measures analysis of variance; rMANOVA, multivariate repeated-measures analysis of variance.
*Subjects with missing data are often omitted from the analysis.
†It is not necessary to omit subjects with missing values from the analysis or to impute missing values.
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sion of subjects can introduce sample
bias, as the group of people with
complete data may not be represen-
tative of the entire population. Im-
putation by using the last available
observation on each subject in place
of all subsequent missing observa-
tions (LOCF) usually leads to bi-
ased treatment estimates. Another
disadvantage of rANOVA is that ob-
servations on all individuals need to
be made at the same time points.

Univariate repeated-measures
ANOVA also requires that correla-
tions among measurements on the
same subject satisfy a restrictive con-
dition called sphericity or circular-
ity. This usually (but not always)
amounts to having equal variabil-
ity of the measurements at each time
point and equal correlations be-
tween every 2 measurements on the
same individual (eg, the correla-
tion between measurements at times
t1 and t2 is the same as the correla-
tion between measurements at times
t1 and tm). However, this assump-
tion is infrequently justified, since
consecutive observations on the
same subject tend to be correlated
more highly than observations on
the same subject taken further away
in time. When this occurs, the type
I error rate is inflated, and there is
an overestimation of the statistical
significance of the treatment� time
effect. This problem has long been
acknowledged, and the Greenhouse-
Geisser10 and Huynh-Feldt11 correc-
tions to the significance tests in
rANOVA have been proposed. These
corrections reduce the numerator
degrees of freedom for the statisti-
cal tests so that the P value is usu-
ally adjusted upward and the type I
error rate is closer to the target 5%

level.12,13 In addition to serial corre-
lation, the variability of the mea-
surements often increases over time.
The Greenhouse-Geisser correc-
tion addresses this potential prob-
lem, but the correction tends to be
very conservative.14 This means that
treatment differences are harder to
detect.

Several authors5,14,15 advocate
the general use of rMANOVA16

rather than rANOVA. This ap-
proach is also known as multivari-
ate growth-curve analysis.4 How-
ever, it requires complete data on all
subjects and can show significant
loss of power (ability to detect treat-
ment differences) if individuals with
missing data are dropped from the
model. As in rANOVA, individuals
with complete data may not be rep-
resentative of the entire popula-
tion, and hence results may not be
generalized. Imputation of missing
data also usually leads to biased es-
timates, and the multivariate ap-
proach has been shown to be less
powerful than the univariate ap-
proach when the sphericity assump-
tion is satisfied. On the other hand,
it does not make any restrictive as-
sumptions about the variances and
correlations, it is easily imple-
mented, and, as long as a sufficient
sample size is available, its results are
valid.14

MIXED-EFFECTS MODELS

Random-effects models17,18 (also
called random-regression models,3

multilevel models,19 hierarchical lin-
ear models,20 and empirical Bayes
models21) provide a flexible frame-
work for the analysis of repeated
measures.3,4,22 Random-effects mod-
els assume that individuals deviate
randomly from the overall average
response. Consider an example
where an individual’s response over
time is a straight line and individu-
als differ from one another in their
responses at baseline (intercepts)
and in their rates of response
(slopes). Individuals can start higher
or lower and show a higher- or
lower-than-average change over
time. Such a scenario is illustrated
in Figure 1, where the gray lines
indicate the change in response over
time for 6 hypothetical subjects and
the black line is the average re-

sponse over time. The model that
generated these data, the random in-
tercept and slope model, is one of the
simplest random-effects models. In
more complex models, the trajec-
tory over time can be more compli-
cated (eg, there may be an initial fast
change and then leveling off of the
response), and individuals may dif-
fer by the time that the leveling off
occurs.

In the random-effects ap-
proach, the correlation between re-
peated observations on the same
subject arises from the common ran-
dom effect(s) for this individual (the
random intercept and slope in the
example in Figure 1). However, it is
also possible to specify directly a pat-
tern for the variances and correla-
tions over time and to use the data
to estimate its parameters. Such
models are called covariance-
pattern models23 and may be used
separately or in combination with
random effects. The specified struc-
tures vary in complexity from a com-
pound symmetry (equal variances at
all time points and equal correla-
tions between any 2 measurements
on the same subject) to no restric-
tions at all.24,25 As an intermediate
complexity, one can assume that cor-
relation between observations de-
creases with increasing time differ-
ence. Such a structure is called
autoregressive and is considered in
an example in the “Methods” sub-
section of the “Simulation Study”
section.

ADVANTAGES OF
MIXED-EFFECTS MODELS

Mixed-effects (regression) model23,26 is
a general term encompassing mod-
els with fixed (eg, treatment) and ran-
dom effects, covariance pattern mod-
els, and combinations of these. The
mixed-effects approach has impor-
tant advantages over traditional meth-
ods of repeated-measures analysis. It
uses all available data on each sub-
ject, it is unaffected by randomly
missing data, it can flexibly model
time effects, and it allows the use of
realistic yet parsimonious variance
and correlation patterns for particu-
lar applications. For example, in drug
trials, variability often increases over
time and may differ across subject
groups, or variability can be higher
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Figure 1. Hypothetical example of a random
intercept/random slope model. The 6 gray lines
correspond to responses over time of 6
hypothetical subjects. The individuals differ at
baseline and in the rate of change over time.
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shortly after drug administration than
at baseline or later in the study. Tra-
ditional methods do not allow the in-
vestigator to use that information to
achieve more efficient statistical in-
ference and hence greater power. On
the other hand, the mixed-effects
model allows the researcher to specify
several different patterns with vary-
ing complexity and to select the best-
fitting one using indices of relative
goodness of fit such as Akaike infor-
mation criterion and the Schwarz
Bayesian criterion. These indices re-
flect how well each model agrees with
the data and include a penalty for the
number of est imated param-
eters,23,24 so that overly complicated
models are discouraged. Plots of cor-
relation estimates can also help in the
choice of the pattern. For a more de-
tailed description, we refer the reader
to a tutorial by Littell et al.24

Choosing an appropriate pat-
tern of variability over time results
in more accurate treatment effect and
SE estimates and helps control type
I error.23 Improvements in accu-
racy may be important because they
lead to a decrease of the number of
patients required for a particular trial
to achieve certain power. Mixed-
effects models can handle covari-
ates that change over time (eg, con-
current medication or smoking
status) and covariates that do not
change with time (eg, sex).

Mixed-effects models allow es-
timation of average time trends for
treatment groups and of the indi-
vidual’s response over time. In con-
trast to traditional models, the pre-
dicted response at each time point
is not the same for all subjects in the
same treatment group. For ex-
ample, subjects whose response is
larger than the average response at
the beginning of the study may tend
to have a higher response through-
out the study. Mixed-effects mod-
els also provide an estimate of the
individual variability around the
population trend. In the example in
Figure 1, this would be the variabil-
ity of the individual intercepts and
slopes and the correlation between
them. Mixed-effects models deal
seamlessly with unequally spaced
observations over time.

Missing data do not present a
problem for mixed-effects models as
long as data are missing at random,

ie, if the chance of a missing value is
not related to the unobserved re-
sponse values. This is the case when
an observation is missing because of
instrument failure or when the prob-
ability of dropping out depends only
on covariates included in the model
(missing completely at random
[MCAR]27). This is also the case when
the likelihood of dropping out de-
pends only on past values of the re-
sponse variable, but not on future re-
sponse values (missing at random
[MAR]27). This assumption means
that a subject who drops out and a
subject who stays in the study with
the same response histories have iden-
tical probabilities of future response
paths. In the MAR and MCAR sce-
narios, the mixed-effects approach is
valid and fully efficient. This is not the
case for end-point, rANOVA, and
rMANOVA approaches.

However, when data are not
randomly missing, the random-
effects approach, like all traditional
approaches, may yield biased esti-
mates. In psychiatric research, sub-
jects who do not improve are more
likely to drop out of the study. This
may correspond to random drop-
out (if the probability of dropping
out is related to earlier but not to the
current or future response values) or
to nonrandom (informative, non-
ignorable) dropout (if the probabil-
ity of dropping out is related to the
current or future response, or to an
unobserved process related to the
response). Ascertainment of the type
of dropout is difficult and often im-
possible. When the dropout is non-
ignorable, one can model the miss-
ingness mechanism together with
the outcome variable. Different ap-
proaches have been proposed in the
statistical literature,5,28-31 but owing
to the complexity of such models,
the expertise of a statistician is re-
quired. Because models for non-
ignorable missing data rely on as-
sumptions that cannot be verified
from the data, they are perhaps most
useful in a sensitivity analysis frame-
work to help assess the robustness
of a result from a MAR analysis.32

The MAR assumption is often rea-
sonable in practice,33 and hence
mixed-effects models without mod-
eling the missingness mechanism
can be used as a primary analysis
tool.

POTENTIAL PROBLEMS
AND MISUSES OF

MIXED-EFFECTS MODELS

Despite the many advantages of
mixed-effects models, their use out-
side the statistical literature has been
limited. This can be attributed to the
complexity of these models, and
the only recent introduction of re-
liable software to the general pub-
lic (eg, SAS PROC MIXED34 and
MIXREG35). Applying mixed mod-
els to small samples or including un-
necessary covariates may bias pa-
rameter estimates and statistical
tests.36-39 Assumption violations are
also harder to ascertain and may lead
to erroneous conclusions. Mixed-
effects models occasionally have
computational problems when the
iterative fitting algorithm fails to con-
verge, so the range of possible mod-
els is limited by sample size, num-
ber of time points, and correlation
structure of the data.

SIMULATION STUDY

Methods

To illustrate some of the advan-
tages of mixed models and espe-
cially the less popular covariance-
pattern approach, we conducted a
small simulation study and ana-
lyzed real data from a clinical trial.40

The simulated data example is mo-
tivated by 2 clinical trials in pa-
tients with schizophrenia who were
given medication after baseline as-
sessments. Outcome measures were
collected on several groups of sub-
jects repeatedly over time. Variabil-
ity right after the drug administra-
tion was higher than at the baseline
and subsequent assessments, and the
correlation between measurements
on the same individual decreased
with the increasing time differ-
ence.

We simulated 500 data sets
with such correlation structure. Each
data set consisted of 4 repeated mea-
surements on 50 subjects equally
divided in 2 groups (a treatment
and a control group). Both groups
had similar baseline measurements
and showed an increase at the sec-
ond time point and a decrease after
the peak. However, the treatment
group had a larger increase and
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maintained a higher response after
the peak (Figure 2). The mean
scores were 9, 11, 10, and 9 for the
treatment group and 9, 10.5, 9, and
8 for the control group. The vari-
ances were the same (equal to 1) at
all time points except immediately
after the drug administration (vari-
ance equal to 4), and the correla-
tions followed autoregressive struc-
ture wi th a wi th in- sub jec t
correlation of 0.5. This means that
the correlation between consecu-
tive observations on the same sub-
ject was 0.5, between observations
2 units apart on the same subject was
0.5�0.5=0.25, and between obser-

vations 3 units apart on the same
subject was 0.5�0.5�0.5=0.125.

We fit rANOVA, rMANOVA,
and 3 different mixed-effects mod-
els for the complete data and when
10% to 15% of the data were miss-
ing according to 3 different pat-
terns of missingness. The MCAR pat-
tern was created by assigning equal
chance to each value to be missing.
The MAR and the informative miss-
ingness patterns were created by as-
signing a 40% chance of dropout for
patients whose observed value at
time 2 was greater than 11 (the av-
erage in the treatment group). The
only difference was that in the in-
formative dropout pattern, the value
that triggered the dropout was
treated as unobserved and was de-
leted from the data set.

Results

The type I error rates and power es-
timates for the treatment� time in-
teraction tests (the effect of great-
est interest) are reported in Table2.
Results from the rANOVA ap-
proach are shown in 3 columns cor-
responding to unadjusted F tests
and F tests with the Greenhouse-
Geisser and Huynh-Feldt adjust-

ments. The 3 mixed models do not
have random effects and have com-
pound symmetry and unstructured
and heterogeneous autoregression
(the correct one) covariance pat-
terns.

For the complete data, the
mixed model with the most appro-
priate correlation structure (ARH)
provides the best power (80%) and
the lowest type I error rate (0%). The
rMANOVA approach and its equiva-
lent mixed model (unstructured pat-
tern [UN]) provide the same power
(80%) but have higher type I error
rates (10%). The adjusted rANO-
VAs have the same type I error rate
as the ARH mixed model (0%) but
have much smaller power (60%).
When data are deleted according to
all considered missing-data sce-
narios, all approaches show de-
crease in power, but the ARH mixed
model usually has the best power
(�73%) and some of the lowest type
I error rates (2%-5%). The UN mixed
model usually has similar power
(within 2% difference) but higher
type I error rate (4%-9%) than the
best-fitting ARH model. Although it
is equivalent to the rMANOVA model
for complete data, the UN mixed
model has more than 10% higher
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Figure 2. Mean and SD for 2 groups of subjects
receiving 2 different treatments in a hypothetical
repeated-measures example.

Table 2. Results From the Tests of the Treatment � Time Interaction in the Simulation Study

Data Set Effect

rANOVA

rMANOVA

Mixed-Effects Model

Unadjusted GG HF CS UN ARH

Complete data
Type I error 0.10 0.00 0.00 0.10 0.10 0.10 0.00
Power 0.70 0.60 0.60 0.80 0.70 0.80 0.80

MCAR
Type I error 0.07 0.05 0.06 0.05 0.06 0.04 0.02
Power 0.50 0.45 0.46 0.60 0.55 0.75 0.73

MCAR, LOCF
Type I error 0.07 0.04 0.05 0.04 NA NA NA
Power 0.48 0.42 0.44 0.52

MAR
Type I error 0.07 0.05 0.05 0.08 0.07 0.09 0.05
Power 0.56 0.49 0.51 0.66 0.58 0.78 0.78

MAR, LOCF
Type I error 0.03 0.01 0.02 0.02 NA NA NA
Power 0.53 0.48 0.50 0.43

Informative missing
Type I error 0.07 0.05 0.05 0.08 0.07 0.09 0.05
Power 0.56 0.49 0.51 0.66 0.65 0.77 0.77

Informative missing, LOCF
Type I error 0.07 0.04 0.05 0.09 NA NA NA
Power 0.56 0.47 0.49 0.67

Abbreviations: ARH, autoregressive heterogeneous pattern; CS, compound symmetry pattern of variances and correlations; GG, Greenhouse-Geisser correction;
HF, Huynh-Feldt correction; LOCF, missing values filled in with last observation carried forward; MAR, missing at random; MCAR, missing completely at random;
NA, imputation with LOCF should not be performed; rANOVA, univariate repeated-measures analysis of variance; rMANOVA, multivariate repeated-measures
analysis of variance; UN, unstructured pattern.
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power than the rMANOVA model
when missing data are present, since
it does not drop subjects with incom-
plete data from analysis. The power
deterioration is also evident for the
rANOVA models with and without
imputation of missing values. The
power of the unadjusted rANOVA
test in the complete data scenario is
70%, whereas the best power in any
of the missing data/imputation sce-
narios is 56%. The LOCF has differ-
ential effect on the results, depend-
ing on the missing data scenario and
on the method of analysis used. For
example, the rMANOVA approach
demonstrates a decrease in power
(from 66% to 43%) and in type I er-
ror rate (from 8% to 2%) after LOCF
imputation in the MAR scenario and
almost no change in the informative
missingness scenario (power and type
I error rates are within 1% difference).
Although the LOCF is considered by
some to be a conservative approach,
it may lead to more liberal rather than
more conservative tests, depending
on the application.

In this example, the mixed-
effects approach has the best power
to detect treatment differences, es-
pecially in the case of missing data.
The LOCF has a different effect, de-
pending on the dropout mecha-
nism, whereas the mixed-effects ap-
proach was relatively unaffected by
the presence and mechanism of
missingness. Although examples can
be constructed when the mixed
model will also give misleading re-
sults in the presence of informative
dropout simulation, studies sug-
gest that if appropriately used, it may
be more robust than the traditional
approaches in the presence of infor-
mative dropout.6,7

A CLINICAL TRIAL DATA SET

Methods

We now illustrate how to use the
mixed-model approach and com-
pare it with the standard ap-
proaches on a data set from a ran-
domized clinical trial of the effect of
naltrexone as an adjunct to stan-
dardized psychosocial therapy in the
treatment of alcohol dependence.40

Six hundred twenty-seven veterans
with chronic, severe alcohol depen-
dence were assigned to 12 months

of naltrexone treatment, 3 months
of naltrexone treatment followed by
9 months of placebo treatment, or
12 months of placebo treatment.
Herein we consider one of the sec-
ondary outcome measures from the
original study: the average finan-
cial satisfaction score. This score is
defined as the average of the 4 fi-
nancial items of the Lehman Qual-
ity of Life Scale. On each item, val-
ues ranged from 1 (terrible) to 7
(delighted), the average scores had
approximately bell-shaped distribu-
tion, and hence the assumption of
normality underlying the tradi-
tional approaches and the mixed-
model approach was at least approxi-
mately satisfied. The Lehman
Quality of Life Scale was adminis-
tered at baseline and weeks 4, 26, 52,
and 78 of the trial. A graph of means
over time is shown in Figure 3.

We considered a random inter-
cept-slope mixed-effects model with
autocorrelated errors and several dif-
ferent covariance-pattern models
with plausible patterns of covari-
ance (compound symmetry, auto-
correlated for unequally spaced time
points, and unstructured). The un-
structured pattern was the best-
fitting one according to the Akaike
and Bayesian information criteria.
Residual plots did not show any ob-
vious patterns, and hence we con-
cluded that the assumptions of the
model were reasonably satisfied and
that there were no outliers.

Results

Only 211 subjects had complete
data, and traditional analyses in the
first part of Table 3 are based on
this smaller sample. In the second
part of Table 3, results after LOCF
imputation are shown. No end-
point differences and no signifi-
cant group� time effects are ob-
served. The time effect is always
highly significant, indicating im-
provement over time for all sub-
jects staying in the study. The ran-
dom intercept–random slope model
allows for estimation of slopes for
each treatment group on average and
for each individual. After LOCF im-
putation, the group main effect is sig-
nificant using the rANOVA and
rMANOVA approaches at the level
of .05 (P=.04), and hence the LOCF

approach is more liberal in this case.
The best-fitting mixed model does
not show a significant group effect
(P=.07). Since a large proportion of
the data are missing, the results may
be significantly affected by the pat-
tern of missingness. For example, the
time effect may be overestimated if
subjects who drop out of the study
get financially more dissatisfied. Be-
cause dropout rates do not differ be-
tween treatment groups over time,
and because the group� time effect
is very highly nonsignificant, it is un-
likely that taking the dropout
mechanism into account will lead to
a change in the conclusions of no dif-
ferences according to treatment regi-
men over time.

COMMENT

Univariate repeated-measures
ANOVA is still the most commonly
used statistical analysis tool for re-
peated measures in psychiatric re-
search because of its simplicity and
familiarity to researchers. How-
ever, as psychiatrists become in-
creasingly aware of the advantages
of mixed-effects models, the pro-
portion of reports that use the newer
methods increases. To detect the ex-
tent to which the shift away from tra-
ditional methods toward mixed-
effects models has taken place within
the ARCHIVES, we reviewed all pub-
lished studies with repeated-
measures designs in the past 12 years
and classified them according to the
most advanced statistical method
used (mixed-e f f ec t s mode l ,
rMANOVA, rANOVA, and end-
point analysis, in that order). The
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Figure 3. Average Lehman Quality of Life
Indices of Finance Satisfaction (QLI-Finance) for
the placebo and short- and long-term naltrexone
treatment arms of the naltrexone clinical trial.
No significant treatment� time effect was
observed using traditional and mixed-model
approaches.
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percentage of papers with repeated-
measures analysis using mixed-
effects models increased from 0% in
1989 to almost 30% in 1999 and
2001.

Mixed-effects models provide a
very flexible approach for the analy-
sis of repeated-measures data arising
from medical research studies. They
allow for assessment of individual and
population trends over time, for the
use of time-independent and time-
dependent covariates and irregular
measurement occasions. They use all
available data on each individual and
provide a choice of appropriate co-
variancepattern thatmay lead tomore
efficient estimation. As the pattern of
variability is not known a priori, a
comparison of several alternative
structures may help the researcher to
choose the best-fitting one and hence
to obtain additional information
about the data. The traditional ap-
proaches provide no such flexibility.
Even when the rANOVA approach
provides a good approximation
of the significance level for the
treatment�time effect, it tells noth-
ing about the pattern of change in
variability over time. The rMANOVA
approach provides general estimates
of the variances and correlations, but
without an alternative model for com-
parison, it is not possible to see
whether there is a more parsimoni-
ous structure that describes the data
well and may lead to better power.

Mixed-effects models should be
used with caution because of their
complexity and opportunity for mis-

use, and because of the require-
ment of relatively large samples.
Mixed-effects models can give bi-
ased results in the presence of in-
formative missingness. A number of
simulation studies6,7,36-39,41-43 have in-
vestigated the performance of mixed
models and documented appropri-
ate uses and misuses of these mod-
els. However, specific guidelines for
the use of these methods for analy-
sis of data from clinical trials and
longitudinal follow-up studies in
psychiatry are not yet available.

In general, mixed-effects mod-
els are the preferable method of
analysis of repeatedly measured out-
comes when there are missing data,
the repeated measures are irregu-
larly spaced over time, and the
sample sizes are modest to large.
Mixed models yield unbiased and ef-
ficient estimates under MCAR and
MAR assumptions, which are often
reasonable in clinical trials. Tradi-
t ional and mixed-effects ap-
proaches produce biased results in
the presence of informative drop-
out, but the bias may be smaller in
mixed-effects models.6,7 Mixed mod-
els can also be used for sensitivity
analysis. Situations in which the tra-
ditional methods (end point,
rANOVA, and rMANOVA) may be
preferred to the mixed-model ap-
proach include complete data with
observations taken at the same oc-
casions. Univariate repeated-
measures ANOVA may also be pre-
ferred in small samples (n�10)
when the implicit assumptions of

normality and sphericity are reason-
ably satisfied.

Although our focus in the pres-
ent article has been on continuous
outcomes, mixed-effects models can
also be used in the case of binary, cat-
egorical, or other nonnormal
data.44-48 With modern computing
power, it is not necessary to trans-
form data to normality, as suitable
models can be developed and ap-
plied to the raw data. The general-
ized linear mixed models are more
complex than normal mixed-
effects models, but such models pro-
vide great flexibility in analyzing a
wide range of data and should be
considered in analysis planning. In
1993, Gibbons et al3 commented that
“methods by which longitudinal
studies are analyzed are not com-
mensurate with the level of effort in-
volved in their collection.” Al-
though some progress has been
made in the psychiatric literature, as
demonstrated by the shift from tra-
ditional methods to mixed-effects
models in the ARCHIVES, more ap-
propriate, well-performed analyses
are needed to better understand and
use available data.
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Table 3. Results From Repeated-Measures Analyses of the Financial Satisfaction Outcome
From the Naltrexone Randomized Clinical Trial

Effect
ANCOVA on
End Point

rANOVA With
GG Adjustment rMANOVA

Mixed-Effects Model
With Unstructured Pattern

Random Intercept/Slope Model
With Autoregressive Errors

Group F2,335 = 0.08 F2,208 = 0.22 F2,208 = 0.22 F2,591 = 2.62 F2,642 = 1.82
P = .92 P = .80 P = .80 P = .07 P = .16

Time F4,832 = 19.8 F4,205 = 16.2 F4,402 = 28.1 F1,671 = 104.5
P�.001 P�.001 P�.001 P�.001

Group � time F8,832 = 0.71 F8,410 = 0.87 F8,566 = 0.77 F2,671 = 0.04
P = .69 P = .54 P = .63 P = .96

LOCF
Group F2,617 = 0.67 F2,618 = 3.15 F2,618 = 3.15

LOCF not appropriate LOCF not appropriate

P = .51 P = .04 P = .04
Time F4,2472 = 38.8 F4,615 = 21.6

P�.001 P�.001
Group � time F8,2472 = 0.79 F8,1230 = 0.85

P = .58 P = .56

Abbreviations: ANCOVA, analysis of covariance; GG, Greenhouse-Geisser correction; LOCF, missing values filled in with last observation carried forward;
rANOVA, univariate repeated-measures analysis of variance; rMANOVA, multivariate repeated-measures analysis of variance.
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